Syntheses and Characterization of the Cobalt Bis-(tetrathiomolybdate) Trianion, $Co(MoS_4)_2^{3-}$

WIE-HIN PAN, DAVID C. JOHNSTON, STEPHEN T. McKENNA, RUSSELL R. CHIANELLI, THOMAS R. HALBERT, L. L. HUTCHINGS and EDWARD I. STIEFEL*

Corporate Research Science Laboratory, Exxon Research and Engineering Co., Clinton Township, Annandale, N.J. 08801, U.S.A.

Received July 23, 1984

The anion MoS_4^{2-} forms a number of interesting bimetallic metal sulfide complexes by acting as a bidentate ligand [1]. For example in the series $M(MoS_4)_2^{2-}$, M can be Zn, Ni, Pd, Pt or Mo=S (the latter in the special case of the recently isolated Mo₃- S_9^{2-} anion [2]). In the case of Fe-Mo-S systems, the presence of an Fe-Mo-S center in nitrogenase has inspired the preparation of the trianion Fe-(MoS_4)_2^{3-} [3, 4]. Further, MoS_4^{2-} can serve as a bridging group as in $MoS_4(FeCl_2)_2$ [2-5, 6] or as a starting material to form clusters such as Mo_2 - $Fe_6S_8(SR)_9^{3-}$ [7].

In the series $M(MoS_4)_2^{2^{-3^{-1}}}$, the species with M = Co are notably absent from the literature. Our initial efforts to prepare Co(MoS₄)₂²⁻ led invariably to black-grey solid materials insoluble in common organic solvents. Failure to prepare a stable Co complex with MoS_4^{2-} was reminiscent of the situation first observed with the Fe system. In the Fe system, although the dianionic complex Fe-(MoS₄)₂²⁻ was briefly reported [8], MacDonald et al. [3] and Coucouvanis et al. [4] independently discovered that the reduced complex, Fe(MoS₄)2³⁻, could be isolated in stable form. Cyclic voltammetry of this compound shows an irreversible oxidation wave at -0.075 V vs. SCE, consistent with the failure to isolate the dianion $Fe(MoS_4)_2^{2-}$. $Fe(MoS_4)_2^{3-}$ can be regarded as having formally Fe(I) wherein Fe(I) to MoS_4^{2-} charge delocalization presumably plays a central role in stabilizing the trianion** [9].

The stability of the trianionic Fe complex suggested that the trianionic Co complex might also be most amenable to synthesis. This is indeed the case. Reacting a solution of $CoCl_2$ and $[N(C_2H_5)_3H]$ - egy egy age 380 460 540 620 700 780 860 nm

Fig. 1. Electronic spectrum of $[N(C_2H_5)_4]_3Co(MoS_4)_2$ in DMF.

 (SC_6H_5) in CH₃CN with a suspension of an MoS₄²⁻ salt in CH₃CN provides a simple route to salts of the trianion Co(MoS₄)₂³⁻ in high yield[†]. The dark greygreen compounds are air-sensitive and decompose completely in aerobic solutions within 15 minutes. The IR spectrum (KBr pellet of $N(C_2H_5)_4^*$ salt) is similar to that of $Fe(MoS_4)_2^{3-}$ [3, 4], showing bands at 481(s) cm⁻¹, 466(s) cm⁻¹ and 445(m) cm⁻¹. The first peak is assigned to a terminal Mo-S stretching vibration while the last two peaks are assigned to bridging Mo-S stretching modes. The UV-VIS-NIR spectrum in DMF (Fig. 1) displays peaks at 825 nm (4,400), 645 nm (6,600), 545 nm (5,300), 453 nm(sh) and 394 nm (19,500 M⁻¹ cm⁻¹). The complex is paramagnetic in DMSO solution having a magnetic moment of 3.3 B.M. (Evans NMR method) [11].

The magnetic susceptibility of $[N(C_2H_5)_4]_3$ -Co(MoS₄)₂ was measured with the Faraday technique from 4 K to 300 K in magnetic fields below 6.3 kG. After correcting for small ferromagnetic impurity contributions and for temperature independent

^{*}Author to whom correspondence should be addressed.

^{**}Similar charge delocalization leads to an electron deficient central metal in the W complex $Fe(WS_4)_2^{2-}$, and results in adduct formation with coordinating solvents such as DMF, DMSO or pyridine. See ref. 10.

[†]In a typical preparation, 1.3 ml HSPh and 1.75 ml N(C₂-H₅)₃ were added to a suspension of 0.66 g CoCl₂ in CH₃-CN; the resulting dark green solution was added to a suspension of 4.9 g $[N(C_2H_5)_4]_2MOS_4$ in CH₃CN. The mixture was stirred and a dark green solution resulted. Within 30 min, the reaction was complete and the solution was filtered. The product was precipitated by adding diethylether to the filtrate. Yields upwards of 70% could be obtained. Anal. Calcd. for C₂₄H₆₀N₃CoMo₂S₈[N(C₂H₅)₄]₃[Co(MoS₄)₂]; C, 32.1%; H, 6.73%; N, 4.68%; found: C, 32.3%; H, 6.63%; N, 4.55%.

Fig. 2. Inverse magnetic susceptibility $(\chi - \chi_0)^{-1} \nu s$. temperature for (TEA)₃Co(MoS₄)₂; χ_0 is the computed temperature independent (diamagnetic) orbital susceptibility.

diamagnetism ($\chi_{calc.}^{dia.} = -4.49 \times 10^{-7} \text{ cm}^3/\text{gm}$), the inverse susceptibility was plotted vs. temperature (Fig. 2). Above about 100 K, the data follow a Curie-Weiss law [$\chi = C/(T - \theta)$] with $C = 1.38 \times 10^{-3} \text{ cm}^3 \text{ K/gm}$, $\mu_{eff} = 3.15 \mu_{\rm B}/\text{Co}$ and $\theta = -2.2 \text{ K}$ leading to g = 2.23 assuming S = 1. Departure of the data from the Curie-Weiss behavior below 100 K is consistent with an axial crystal field splitting of the S = 1 triplet ground state; in this case, one expects χ to follow the relation

$$(\chi T)_{\text{calc.}} = \frac{C \left[1 - \frac{2k_{\text{B}}T}{D} (1 - e^{D/k_{\text{B}}T}) \right]}{2 + e^{D/k_{\text{B}}T}}$$
(1)

where D is the usual anisotropy parameter. Analyzing the data in Fig. 2 in terms of eqn. (1) yielded a good fit with $D/k_{\rm B} = 30$ K; this corresponds to the nonmagnetic triplet $M_{\rm s} = 0$ state being the ground state, with the $M_{\rm s} = \pm 1$ levels lying 30 K above it (in zero magnetic field). The derived value of C (1.34 × 10^{-3} cm³-K/gm) is in good agreement with the value obtained above 100 K and leads to $\mu_{\rm eff} = 3.10 \,\mu_{\rm B}/{\rm Co}$ and (g) = 2.19. The value for $\mu_{\rm eff}$ is in reasonable agreement with the value found from the NMR measurements above. If we assume the presence of Co(I) (3d⁸), the magnetic data suggest a tetrahedral configuration around the central Co atom.

The likelihood of a tetrahedral Co in $Co(MOS_4)_2^{3-}$ also finds support in the reported crystal structures of the analogs, $Co(WS_4)_2^{3-}$ [12] and $Fe(MOS_4)_2^{3-}$ [4], where both the Co and Fe were found to be tetrahedral. The powder X-ray diffraction pattern from $[N(C_2H_5)_4]_3[Co(MOS_4)_2]$ is nearly identical to that of the Fe analog, indicating that these two compounds are isomorphous.^{††}

Fig. 3. Cyclic voltammogram of $[N(C_2H_5)_4]_3Co(MoS_4)_2$ (3 mM in DMF containing 0.1 M $[N(C_4H_9)_4]PF_6$ at 100 mV/ sec scan rate. The weak redox wave marked by an asterisk is attributed to an impurity.

Cyclic voltammetry of $Co(MoS_4)_2^{3-}$ in DMF shows two reversible waves at -0.44 V and -1.83 V (ν s. SCE) (Fig. 3). In comparison, the cyclic voltammetry of $Co(WS_4)_2^{2-}$ shows reversible redox waves at -0.52 V and -2.04 V assigned to the $2^{-}/3^{-}$ and $3^{-}/4^{-}$ couples respectively [13]. In view of previous voltammetric trends [2, 13, 14] of M'(MS_4)_2^{2-} (M = Mo, W; M' = Ni, Pd, Pt, Co, Mo = S) complexes, we assign the two waves observed in $Co(MoS_4)_2^{3-}$ to the $2^{-}/3^{-}$ and $3^{-}/4^{-}$ couples, respectively. In Fe(MoS_4)_2^{3-}, the irreversible $2^{-}/3^{-}$ wave is consistent with the instability of Fe(MoS_4)_2^{2-}. In contrast, the reversible $2^{-}/3^{-}$ wave in the Co complex suggests the existence of $Co(MoS_4)_2^{2-}$ which nonetheless has not been isolated in stable form.

The low formal valence of the central cobalt calls attention to the need for a source of reducing equivalents in the preparative procedure. For example, we have found that either $(\eta^5$ -C₅H₅)Co- $(CO)_2$ or $Co(S_2CN(C_2H_5)_2)_3$ can serve as the Co starting material in the synthesis of $Co(MoS_4)_2^{3-1}$ In using the Co(I) organometallic complex (η^5 -C₅H₅)Co(CO)₂, no added reductant is required and, remarkably, both the CO and cyclopentadienyl ligands are displaced by MoS4²⁻. When the starting material contains divalent or trivalent Co, the presence of a reducing agent is required. When Co- $(S_2CN(C_2H_5)_2)_3$, containing Co(III), is used as the starting material, the reducing agent $S_2CN(C_2H_5)_2$ is released from the Co coordination sphere upon substitution by MoS₄²⁻. In our preferred preparation, C₆H₅S⁻ is added as the reductant for divalent Co with oxidation to $C_6H_5S-SC_6H_5$ presumed to occur. The successful isolation of $Co(MoS_4)_2^{3-}$ may be a further manifestation of the importance of charge delocalization from the central metal to MoS₄ in stabilizing complexes of the type $M(MoS_4)_2^{n-1}$ (n = 2, 3) [9].

^{+†}The powder X-ray diffraction patterns of $[N(C_2H_5)_4]_3$ -Co(MoS₄)₂ and $[N(C_2H_5)_4]_3$ Fe(MoS₄)₂ are practically identical with major peaks at (for Co) $2\theta = 10.27$, 10.95, 17.89 and 18.46° and (for Fe) $2\theta = 10.55$, 11.22, 18.07 and 18.70° ($\lambda = 1.5418$ Å).

Note Added in Proof

The X-ray crystal structure of $[N(C_2H_5)_4]$ $[Ph_3PNPh_3]_2[Co(MoS_4)_2]$ has recently been solved [15]. The central Co atom is indeed tetrahedrally coordinated confirming the structural assignment arrived at in the current note.

References

- 1 A. Müller, E. Diemann, R. Jostes and H. Bögge, Angew. Chem., Int. Ed. Engl., 20, 934 (1981) and references therein.
- 2 W.-H. Pan, M. Leonowicz and E. I. Stiefel, Inorg. Chem., 22, 672 (1983).
- 3 J. W. MacDonald, G. D. Friesen and W. E. Newton, Inorg. Chim. Acta, 46, L79 (1980).
- 4 D. Coucouvanis, E. D. Simhon and N. C. Baenziger, J. Am. Chem. Soc., 102, 6644 (1980).
- 5 D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stremple, D. Swenson, A. Kostikas, A. Simopoulos, V. Petroleas and V. Papaefthymiou, J. Am. Chem. Soc., 102, 1732 (1980).

- 6 A. Müller, S. Sarkar, A. Dommröse and R. Filguera, Z. Naturforsch., Teil B:, 35, 1592 (1980).
- 7 (a) C. D. Garner, S. R. Acott, G. Christou, D. Collison, F. E. Mabbs and D. Petrouleas, *Phil. Trans. R. Soc. London, Ser. A:*, 308, 159 (1972) and references therein;
 (b) G. Christou, P. K. Mascharak, W. H. Armstrong, G. C. Papaefthymiou, R. B. Frankel and R. H. Holm, J. Am. *Chem. Soc.*, 104, 2820 (1982) and references therein.
- 8 (a) A. Müller, E. Ahlborn and H. H. Hansen, Z. Anorg. Alg. Chem., 386, 102 (1971);
 (b) A. Müller and S. Sarkar, Angew. Chem., Int. Ed. Engl., 16, 705 (1977).
- 9 D. Coucouvanis, Acc. Chem. Res., 14, 201 (1981).
- 10 P. Stremple, N. C. Baenziger and D. Coucouvanis, J. Am. Chem. Soc., 103, 4601 (1981).
- 11 D. F. Evans, J. Chem. Soc., 2003 (1959).
- 12 A. Müller, W. Hellmann, U. Schimanski, R. Jostes and W. E. Newton, Z. Naturforsch., Teil B:, 38, 528 (1983).
- 13 A. Müller, R. Jostes, V. Flemming and R. Potthast, Inorg. Chim. Acta, 44, L33 (1980).
- 14 K. P. Callahan and P. A. Piliero, *Inorg. Chem.*, 19, 2619 (1980).
- 15 A. Müller, W. Hellmann, C. Römer, M. Römer, H. Bögge, R. Jostes and U. Schimanski, *Inorg. Chim.* Acta, 83, L15 (1984).