Syntheses and Characterization of the Cobalt Bis- (tetrathiomolybdate) Trianion, $Co(MoS₄)₂³$

WIE-HIN PAN, DAVID C. JOHNSTON, STEPHEN T. McKENNA, RUSSELL R. CHIANELLI, THOMAS R. HALBERT, L. L. HUTCHINGS and EDWARD I. STIEFEL*

Corporate Research Science Laboratory, Exxon Research and Engineering Co., Clinton Township, Annandale, N.J. 08801, U.S.A.

Received July 23, 1984

The anion $MoS₄^{2–}$ forms a number of interesting bimetallic metal sulfide complexes by acting as a bidentate ligand [1]. For example in the series $M(MoS₄)₂²$, M can be Zn, Ni, Pd, Pt or Mo=S (the latter in the special case of the recently isolated Mo₃- S_9^{2-} anion [2]). In the case of Fe-Mo-S systems, the presence of an Fe-MO-S center in nitrogenase has inspired the preparation of the trianion Fe- $(M_0S_1)^{3-1}$ [3, 4]. Further, $M_0S_1^{2-}$ can serve as a bridging group as in $MoS(FeCl_2)$, $[2-5, 6]$ or as a starting material to form clusters such as $Mo₂$ - $Fe_6S_8(SR)_{9}^{3-}[7]$.

In the series $M(MoS₄)₂^{2- $p³$}$, the species with M = Co are notably absent from the literature. Our initial efforts to prepare $Co(MoS₄)₂²$ led invariably to black-grey solid materials insoluble in common organic solvents. Failure to prepare a stable Co complex with MOS_4^{2-} was reminiscent of the situation first observed with the Fe system. In the Fe system, although the dianionic complex Fe- $(MoS₄)₂²⁻$ was briefly reported [8], MacDonald et al. ^[3] and Coucouvanis et al. ^[4] independently discovered that the reduced complex, $Fe(MoS₄)₂³⁻$, could be isolated in stable form. Cyclic voltammetry of this compound shows an irreversible oxidation wave at -0.075 V vs. SCE, consistent with the failure to isolate the dianion $Fe(MoS₄)₂²⁻$. $Fe(MoS₄)₂³$ can be regarded as having formally Fe(I) wherein Fe(I) to $MoS₄²$ charge delocalization presumably plays a central role in stabilizing the trianion** $[9]$.

The stability of the trianionic Fe complex suggested that the trianionic Co complex might also be most amenable to synthesis. This is indeed the case. Reacting a solution of CoCl₂ and $[N(C_2H_5)_3H]$.

Fig. 1. Electronic spectrum of $[N(C_2H_5)_4]_3Co(M_0S_4)_2$ in DMF.

 (SC_6H_5) in CH₃CN with a suspension of an MoS₄^{2–} salt in CH₃CN provides a simple route to salts of the trianion $Co(MoS₄)₂³⁻$ in high yield[†]. The dark greygreen compounds are air-sensitive and decompose completely in aerobic solutions within 15 minutes. The IR spectrum (KBr pellet of $N(C_2H_5)_4^*$ salt) is similar to that of $Fe(M_0S_4)_2^{3-}$ [3, 4], showing bands at $481(s)$ cm⁻¹ $466(s)$ cm⁻¹ and $445(m)$ cm^{-1} . The first peak is assigned to a terminal Mo-S stretching vibration while the last two peaks are assigned to bridging MO-S stretching modes. The UV-VIS-NIR spectrum in DMF (Fig. 1) displays peaks at 825 nm (4,400), 645 nm (6,600), 545 nm $(5,300)$, 453 nm(sh) and 394 nm (19,500 M⁻¹) cm^{-1}). The complex is paramagnetic in DMSO solution having a magnetic moment of 3.3 B.M. (Evans NMR method) [11].

The magnetic susceptibility of $[N(C_2H_5)_4]_3$ - $Co(MoS₄)$, was measured with the Faraday technique from 4 K to 300 K in magnetic fields below 6.3 kG. After correcting for small ferromagnetic impurity contributions and for temperature independent

^{*}Author to whom correspondence should be addressed.

^{**}Similar charge delocalization leads to an electron deficient central metal in the W complex $Fe(WS₄)₂²$, and results in adduct formation with coordinating solvents such as DMF, DMSO or pyridine. See ref. 10.

 $[†]$ In a typical preparation, 1.3 ml HSPh and 1.75 ml N(C₂-</sup> H_5)₃ were added to a suspension of 0.66 g CoCl₂ in CH₃-CN; the resulting dark green solution was added to a suspension of 4.9 g $[N(C_2H_5)_4]_2M_0S_4$ in CH₃CN. The mixture was stirred and a dark green solution resulted. Within 30 min, the reaction was complete and the solution was filtered. The product was precipitated by adding diethylether to the filtrate. Yields upwards of 70% could be obtained. *Anal.* Calcd. for $C_{24}H_{60}N_3CoMo_2S_8[N(C_2H_5)_4]_3[Co(MoS_4)_2]$; C, 32.1%; H, 6.73%; N, 4.68%; found: C, 32.3%; H, 6.63%; N, 4.55%.

Fig. 2. Inverse magnetic susceptibility $(\chi - \chi_0)^{-1}$ vs. temperature for $(TEA)_3Co(MoS_4)_2$; χ_0 is the computed temperature independent (diamagnetic) orbital susceptibility.

diamagnetism $(\chi^{dia}_{calc.} = -4.49 \times 10^{-7} \text{ cm}^3/\text{gm})$, the inverse susceptibility was plotted vs. temperature (Fig. 2). Above about 100 K, the data follow a Curie-Weiss law $[x = C/(T - \theta)]$ with $C = 1.38 \times$ 10^{-3} cm³ K/gm, $\mu_{eff} = 3.15 \mu_B/Co$ and $\theta = -2.2$ K leading to $g = 2.23$ assuming $S = 1$. Departure of the data from the Curie-Weiss behavior below 100 K is consistent with an axial crystal field splitting of the $S = 1$ triplet ground state; in this case, one expects χ to follow the relation

$$
(\chi T)_{\text{calc.}} = \frac{C\left[1 - \frac{2k_{\mathbf{B}}T}{D}(1 - e^{D/k_{\mathbf{B}}T})\right]}{2 + e^{D/k_{\mathbf{B}}T}}
$$
(1)

where *D* is the usual anisotropy parameter. Analyzing the data in Fig. 2 in terms of eqn. (1) yielded a good fit with $D/k_B = 30$ K; this corresponds to the nonmagnetic triplet $M_s = 0$ state being the ground state, with the $M_s = \pm 1$ levels lying 30 K above it (in zero magnetic field). The derived value of C (1.34 \times 10^{-3} cm³-K/gm) is in good agreement with the value obtained above 100 K and leads to $\mu_{eff} = 3.10~\mu_B/Co$ and $\langle g \rangle$ = 2.19. The value for μ_{eff} is in reasonable agreement with the value found from the NMR measurements above. If we assume the presence of $Co(I)$ (3d⁸), the magnetic data suggest a tetrahedral configuration around the central Co atom.

The likelihood of a tetrahedral Co in $Co(MoS₄)₂^{3–1}$ also finds support in the reported crystal structures of the analogs, $Co(WS₄)₂^{3–} [12]$ and $Fe(MoS₄)₂^{3–}$ [4], where both the Co and Fe were found to be tetrahedral. The powder X-ray diffraction pattern from $[N(C_2H_5)_4]_3 [Co(MoS_4)_2]$ is nearly identical to that of the Fe analog, indicating that these two compounds are isomorphous.^{††}

Fig. 3. Cyclic voltammogram of $[N(C_2H_5)_4]_3Co(MoS_4)_2$ (3 mM in DMF containing 0.1 M $[N(C_4H_9)_4]PF_6$ at 100 mV/ sec scan rate. The weak redox wave marked by an asterisk is attributed to an impurity.

Cyclic voltammetry of $Co(MoS₄)₂³⁻$ in DMF shows two reversible waves at -0.44 V and -1.83 V (vs. SCE) (Fig. 3). In comparison, the cyclic voltammetry of $C_0(WS_+)$ ² shows reversible redox waves at -0.52 V and -2.04 V assigned to the 2^{-12} and $3^{-}/4^{-}$ couples respectively [13]. In view of previous voltammetric trends [2, 13, 14] of $M'(MS_4)_2^2$ $(M = Mo, W; M' = Ni, Pd, Pt, Co, Mo = S)$ complexes, we assign the two waves observed in $Co(MoS₄)₂$ ³⁻ $\frac{1}{2}$ the $2^{-}/2$ and $2^{-}/4$ couples, respectively. In $F_e(M_0S_*)^3$ the irreversible $2^{2}/3^{-}$ wave is consisant with the instability of $E_0(M_0S_1)^2$ ⁻. In contrast, the reversible $2^{-(3-)}$ wave in the Co complex suggests the existence of $Co(M_0S_+)$ ²⁻ which nonetheless h_{max} is the ensuries of $\mathcal{O}(h_{\text{max}})$ has not been isolated in stable form.
The low formal valence of the central cobalt

calls attention to the need for a source of reducing equivalents in the preparative procedure. For example, we have found that either $(\eta^5$ -C₅H₅)Co- $(CO)_2$ or $Co(S_2CN(C_2H_5)_2)$ can serve as the Co starting material in the synthesis of $Co(MoS₄)₂^{3–}$ In using the Co(I) organometallic complex $(\eta^5$ - $C_5H_5)Co(CO)_2$, no added reductant is required and, remarkably, both the CO and cyclopentadienyl ligands are displaced by $MoS₄²⁻$. When the starting material contains divalent or trivalent Co, the presence of a reducing agent is required. When Co- $(S_2CN(C_2H_5)_2)_3$, containing Co(III), is used as the starting material, the reducing agent $S_2CN(C_2H_5)_2$ is released from the Co coordination sphere upon substitution by $MoS₄²$. In our preferred preparation, C_6H_5S is added as the reductant for divalent Co with oxidation to $C_6H_5S-SC_6H_5$ presumed to occur. The successful isolation of $C_0(M_0S_+)$ ³⁻ may be a $f(x)$ further manifestation of the importance of charge further manifestation of the importance of charge
delocalization from the central metal to MOS_4^2 in stabilizing complexes of the type $M(MoS₄)₂^{n-}$ $(n = 2, 3)$ [9].

^{+†}The powder X-ray diffraction patterns of $[N(C_2H_5)_4]_3$ - $Co(MoS₄)₂$ and $[N(C₂H₅)₄]$ ₃Fe(MoS₄)₂ are practically identical with major peaks at (for Co) $2\theta = 10.27$, 10.95, 17.89 and 18.46° and (for Fe) $2\theta = 10.55$, 11.22, 18.07 and 18.70° ($\lambda = 1.5418$ Å).

Note Added in Proof

The X-ray crystal structure of $[N(C_2H_5)_4]$ $[Ph_3PNPh_3]_2$ [Co(MoS₄)₂] has recently been solved [15]. The central Co atom is indeed tetrahedrally coordinated confirming the structural assignment arrived at in the current note.

References

- 1 A. Müller, E. Diemann, R. Jostes and H. Bögge, Angew. Chem., Int. Ed. Engl., 20, 934 (1981) and references therein.
- 2 W.-H. Pan, M. Leonowicz and E. I. Stiefel, Inorg. Chem., 22, 672 (1983).
- 3 J. W. MacDonald, G. D. Friesen and W. E. Newton, *Znorg. Chim. Acta, 46,* L79 (1980).
- 4 D. Coucouvanis, E. D. Simhon and N. C. Baenziger, J. *Am. Chem. Sot., 102, 6644* (1980).
- 5 D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stremple, D. Swenson, A. Kostikas, A. Simopoulos, V. Petroleas and V. Papaefthymiou, *J. Am. Chem. Soc.*, *102, 1732* (1980).
- 6 A. Müller, S. Sarkar, A. Dommröse and R. Filguera, Z. *Naturforsch., Teil B:, 35,* 1592 (1980).
- 7 (a) C. D. Garner, S. R. Acott, G. Christou, D. Collison, F. E. Mabbs and D. Petrouleas, *Phil. Trans. R. Sot. London, Ser. A:, 308, 159 (1972)* and references therein; (b) G. Christou, P. K. Mascharak, W. H. Armstrong, G. C. Papaefthymiou, R. B. Frankel and R. H. Holm,J. *Am. Chem. Sot., 104, 2820* (1982) and references therein.
- 8 (a) A. Miiller, E. Ahlborn and H. H. Hansen, Z. *Anorg. Alg.* Chem., 386, 102 (1971); (b) A. Müller and S. Sarkar, *Angew. Chem., Int. Ed. Engl., 16, 705* (1977).
- 9 D. Coucouvanis, *Act. Chem. Res., 14, 201* (1981).
- 10 P. Stremple, N. C. Baenziger and D. Coucouvanis, J. Am. Chem. Soc., 103, 4601 (1981).
- 11 D. F. Evans,J. *Chem. Sot., 2003* (1955).
- 12 A. Miiller, W. Hellmann, U. Schimanski, R. Jostes and W. E. Newton, Z. *Naturforsch., Teil B:, 38, 528* (1983).
- 13 A. Müller, R. Jostes, V. Flemming and R. Potthast, *Inorg. Chim. Acta. 44. L33* (1980).
- 14 K. P. Callahan and P. A. Piliero, *Inorg.* Chem., 19, 2619 (1980).
- 15 A. Müller, W. Hellmann, C. Römer, M. Römer, H. Bögge, R. Jostes and U. Schimanski, *Inorg. Chim. Acta, 83,* L15 (1984).